Endovascular Stroke Therapy

Update with Emphasis on Practical Clinical and Imaging Considerations

Sachin Kishore Pandey, MD, FRCPC

Disclosures

• I have no relevant financial disclosures or conflict of interest

Overview

- Review of the recent literature
 - Emphasis on what was studied, reasons for trial failures/successes and implications for imaging.
- Review Canadian practice guidelines
- Use the literature and national guidelines to develop a practical, acute imaging protocol

Recent Stroke Trials

- In addition to ESCAPE, 4 other major trials published in NEJM in 2015
 - MR CLEAN
 - EXTEND-IA
 - REVASCAT
 - SWIFT-PRIME

MR CLEAN

- Dutch trial published in NEJM December 2014
- 502 patients enrolled from 2010-2014
 - 18yrs old No upper age limit
 - NIHSS >2
 - CTA confirmed anterior occlusion
- Treatments
 - IV tPa (or not) per standard guidelines
 - Allowed IA tPa and/or suction thrombectomy, stent-retriever, wire disruption

EXTEND-IA

- Australian trial published in NEJM March 2015
- 70 patients
 - CTA confirmed anterior occlusion
 - CTP confirmed ischemic penumbra
- Treatments
 - IV tPa per standard guidelines
 - Intervention Solitaire stent-retriever only.

REVASCAT

- Spanish trial published in NEJM April 2015
- 206 patients
 - 18yrs old 80 (85) yrs old
 - NIHSS >6
 - CTA confirmed anterior occlusion
- Treatments
 - IV tPa (or not) per standard guidelines
 - Intervention Solitaire stent retriever only

SWIFT-PRIME

- International trial published in NEJM April 2015
- 196 patients
 - 18yrs old 85yrs old
 - NIHSS >
 - CTA confirmed anterior occlusion
- Treatments
 - IV tPa (or not) per standard guidelines
 - Intervention Solitaire stent retriever only

Trial Take Home Points

- All studies demonstrated statistically significant improvement in 90day mRs
- No study demonstrated statistically significant differences in 90day mortality or rates of symptomatic intracranial hemorrhage

Trial Take Home Points

- All patients subjected to endovascular treatment should be confirmed to have appropriate targets
- Timing is critical to good outcomes
- The use of modern stent-retriever devices improves our ability to open arteries

SYMPTOM ONSET TO tPa ADMINISTRATION

Trial	Standard Therapy	Endovascular + Standard Therapy
ESCAPE	125 mins	110 mins
MR CLEAN	85 mins	87 mins
EXTEND-IA	145 mins	127 mins
REVASCAT	105 mins	117 mins
SWIFT-PRIME	117 mins	111 mins

SYMPTOM ONSET TO GROIN PUNCTURE

Trial	Endovascular + Standard Therapy
ESCAPE	185 mins
MR CLEAN	260 mins
EXTEND-IA	210 mins
REVASCAT	269 mins
SWIFT-PRIME	224 mins

TICI 2B/3 Rates

Trial	Endovascular + Standard Therapy
ESCAPE	72.4 %
MR CLEAN	59 %
EXTEND-IA	86 %
REVASCAT	65.7 %
SWIFT-PRIME	88 %

For 1 Additional Patient with Independent Outcome

- ESCAPE NNT 4
- EXTEND-IA NNT 3.2
- REVASCAT NNT 6.5
- SWIFT-PRIME NNT 4
- MR CLEAN NNT 7

• HERMES – NNT 2.6

Time is Brain

- SWIFT-PRIME
 - IA arm pts reperfused within 2.5hrs of symptom onset \rightarrow <u>91%</u> estimated probability of functional independence
 - By 3.5hrs → <u>80%</u>
 - By 4.5hrs → <u>60%</u>
 - By 5.5hrs → <u>40%</u>

Time is Brain

- ESCAPE
 - For every 30 minute increase in CT-toreperfusion time:
 - Probability of reaching a functionally independent outcome falls by <u>8.3%</u>

So What Does This Mean For the Imaging?

- Our imaging must be:
 FAST To acquire and to interpret
- Our imaging must answer the following questions:
 - Should the patient be screened out of consideration?
 - Does the patient have the disease?
 - Should the patient be treated?

Canadian Best Practice Recommendations - Patient Timelines

 All pts with disabling acute ischemic stroke must screened without delay to determine eligibility for IV tPA (<u>within</u> <u>4.5hrs</u>) and/or IA therapy (<u>within 6hrs</u>)

Canadian Best Practice Recommendations - Imaging

- Non-contrast CT Identify small-tomoderate ischemic 'core' (ASPECTS 6 or higher)
- Endovascular candidates CTA must demonstrate proximal anterior circulation occlusion
 - 'Strongly recommended' that pts have evidence of moderate-to-good collaterals on CTA or CT perfusion 'mismatch'

Hyperacute Stroke Imaging – Practical Approach

- Non-contrast CT
 - Is there acute hemorrhage?
 - Is there a large, established stroke (ie. poor ASPECTS)?

www.aspectsinstroke.com

Ganglionic Level

16

Supraganglionic Level

Hyperacute Stroke Imaging – Practical Approach

- CT Angiogram Head and Neck
 - Is there a proximal large vessel occlusion?
 - Are there any additional proximal occlusions (ie. cervical carotid) or anatomic variants?

Hyperacute Stroke Imaging – Practical Approach

- 'Multi-phase' CT angiogram
 - Normal CT angiogram followed by 2 additional scans from the skull base to vertex only
 - No additional contrast needed
 - Additional radiation dose of ~1mSv
 - Basic Question Are there moderate-togood collaterals?

Radiation Dose Context

- Annual background 1.8mSv/yr
- Chest CT 7mSv
- <u>"Kitchen-sink" stroke CT 12mSv</u>
- Annual dose limit for nuclear workers 50mSv
- Avg annual exposure to astronaut 150mSv
- Radiation sickness symptoms 1000mSv

Hyperacute Stroke Imaging – Practical Summary

- Screening
 - NC Head Hemorrhage? ASPECTS?
 - CTA Head/Neck Proximal large vessel occlusion?
- Decision to Treat
 - Multiphase CTA Good collaterals?

Canadian Best Practice Recommendations – Clinical Timelines

- Time from Door to t-PA of 30 minutes (median) with 90th percentile of 60 minutes
- Time from CT to Groin Puncture of 60
 minutes

Mechanical Thrombectomy -Devices

- Retrievable stents
 - Solitaire (Medtronic)
 - Trevo (Stryker)
- Aspiration catheters
 - Penumbra
- Both

Images from John, Hussein et al. J Cerebrovasc Endovasc Neurosurg. 2014

Overview

- Review of the recent literature
 - Emphasis on what was studied, reasons for trial failures/successes and implications for imaging.
- Review Canadian practice guidelines
- Use the literature and national guidelines to develop a practical, acute imaging protocol

References

- Goyal et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372:1019-1030
- Berkhemer et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372:11-20
- Jovin et al. Thrombectomy within 8 hours after symptom onset in ischemic strok. N Engl J Med 2015; 372:2296-2306
- Saver et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372:2285-2295
- Campbell et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372:1009-1018
- Casaubon et al. Canadian stroke best practice recommendations: hyperacute stroke care guidelines, update 2015. Int J Stroke 2015; 10:924-940
- Mechanical thrombectomy for patients with acute ischemic stroke: OHTAC Recommendation. September 2015; pp 1-4 - DRAFT
- John et al. Initial experience using the 5MAX ACE reperfusion catheter in intra-arterial therapy for acute ischemic stroke. J Cerebrovasc Endovasc Neurosurg. 2014 Dec; 16(4):350-357
- Menon et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015; Vol 275: Number 2
- Menon et al. Imaging paradigms in acute ischemic stroke: a pragmatic evidence-based approach. Radiology 2015; Vol 277: Number 1

Thank You!

